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ABSTRACT

In this paper we use the Reynolds stress models (RSM) to derive algebraic expressions for the following variables: a) heat fluxes; b) μ
fluxes; and c) momentum fluxes. These relations, which are fully 3D, include:
1) stable and unstable stratification, represented by the Brunt-V äisäla frequency, N2 = −gH−1

p (∇ − ∇ad)(1 − Rμ);
2) double diffusion, salt-fingers, and semi-convection, represented by the density ratio Rμ = ∇μ(∇ − ∇ad)−1;
3) shear (differential rotation), represented by the mean squared shear Σ2 or by the Richardson number, Ri = N2Σ−2;
4) radiative losses represented by a Peclet number, Pe;
5) a complete analytical solution of the 1D version of the model. In general, the model requires the solution of two differential
equations for the eddy kinetic energy K and its rate of dissipation, ε. In the local and stationary cases, when production equals
dissipation, the model equations are all algebraic.
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1. Introduction

Since mixing in stars is a complex interplay of regimes of unsta-
ble stratification, stable stratification, differential rotation, grav-
ity waves, double-diffusion, etc., it could be expected that the
formalisms employed are general enough to account for such
a wide variety of processes. And yet, the literature shows that
this is not the case since the two main methodologies being em-
ployed are: a) large scale numerical simulations (e.g., Brummell
et al. 2002); and b) heuristic models (e.g., Maeder & Meynet
2001; Mathis et al. 2004; Palacios et al. 2003, 2006; Charbonnel
& Talon 2005, 2007).

In the first case, the values of some of the stellar parameters,
such as the Prandtl number, are widely different from those in
stars, and no specific results have yet been produced that can be
employed in stellar structure/evolution calculations. The authors
of those studies in fact state that their primary goal was to eluci-
date the intertwined physical processes and not (yet) to provide
stellar studies with tools to model the processes of interest. As
for the heuristic models, we believe they may have exhausted
their fruitfulness since it is extremely difficult, if not almost im-
possible, to build models capable of embracing the wide variety
of processes such as the ones cited at the beginning, ultimately
because such processes are not additive.

It is instructive to point out that an analogous situation once
existed in geophysics, specifically in modeling atmospheric and
oceanic mixing. A few decades ago, however, a shift took place
from heuristic, unpredictive approaches in favor of a predictive,
prognostic, and flexible tool known as RSM (Reynolds stress
models), which are now commonly used. For reasons unclear
to the present author, stellar mixing studies have lagged behind

� This work is dedicated to Aura Sofia Canuto.

geophysical studies, and this paper will thus present a new RSM-
based model, as well as the limitations of the heuristic models.

The RSM consist of a set of equations for the turbulent corre-
lations of the velocity, temperature, and concentration fields that
are derived directly from the Navier-Stokes, temperature, and
concentration equations. The main features can be summarized
as follows:

a) mathematical structure: most of the relevant equations are
linear, algebraic relations and thus pose no particular numer-
ical problems;

b) flexibility: one of the key advantages is that adding new pro-
cesses such as rotation, vorticity, double-diffusion, etc., does
not require guesswork since the RSM have a well-defined set
of procedural rules,

c) assessment: the results of the RSM can be assessed before
they are used in a stellar context, an important feature that
none of the heuristic model enjoys, raising the justified sus-
picion that such models, tailored to a specific astrophysical
setting, have a limited predictive power. The general prop-
erties of the RSM have recently been reviewed in (Canuto
2006, 2009).

2. Mean variables

When dealing with mixing in stellar interiors, most of the models
concentrate on the temperature field because it enters the convec-
tive flux. However, a single field such as the temperature, cannot
represent the complexity of stellar mixing processes for which
one needs three fields,

ui,T, c (1a)
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representing velocity, temperature, and a scalar c-field. The ve-
locity field is needed because its mean values correspond to
meridional and azimuthal currents, while its gradients give rise
to shear (differential rotation) mixing. The scalar c-field can be
of two kinds: active and passive. An active c-field is, for exam-
ple, the mean molecular weight μ, and a passive c-field is for
example a tracer such as Li7. By active is meant a scalar that af-
fects the density, which in turn affects the velocity field, and thus
ultimately alters the turbulent state; in contrast, a passive scalar
is transported by the flow without altering it. This can be seen by
considering the relations

ρ = ρ + ρ′, ρ′ = ρ(−αT T ′ + αμμ′) (1b)

where αT,μ = −(∂ lnρ/∂T )p,μ, (∂ lnρ/∂μ)p,T are the expan-
sion coefficients. A passive scalar does not contribute to the rhs
of (1b). When we expand the density field in the derivations, we
use (1b) in which the c-field is the μ-field. Their different effects
on the density mean that the two c-fields have different dynam-
ics, and in what follows we use the c-field notation when the re-
lations apply to both passive and active scalars. When the differ-
entiation becomes necessary, we use the symbol μ for an active
scalar. The inclusion of the μ field is necessary since its gradi-
ent is opposite to that of the T -field, a situation that in the ocean
gives rise to two well known processes, namely salt-fingers and
diffusive convection, the latter being called semi-convection in
the astrophysical literature. Each field has an average and a fluc-
tuating component,

u = u + u′, T = T + T ′, c = C + c′, (1c)

and since due to turbulence, the correlation among two fluctu-
ating variables is not zero, in addition to having three equations
for the mean fields T ,C, u, one must derive the equations for
second-order correlations, such as

heat fluxes: u′T ′, c − fluxes: u′c′, momentum fluxes: u′iu
′
j. (1d)

However, it turns out that the equations for the fluxes (1d) in-
volve the correlations of the fields themselves, specifically

temp. variance: T ′2, c−variance

: c′2, temp. − c−correlation :c′T ′, (1e)

whose dynamic equations must therefore also be included and
solved. In what follows, we first derive the dynamic equations
for the three mean variables T ,C, u and then derive those for the
variables (1c, d).

2.1. Mean temperature

Since there is no conservation equation for T , we begin with
the entropy S -equation from which one then derives an equa-
tion for T . Second, we must consider an entropy equation for a
mixture of fluids since we want to include different species, for
example He and H. With these provisos, the starting S -equation
reads as (Landau & Lifshitz 1987)

ρT
dS
dt
= − ∂

∂xi
(qi + ρμ̃Ji) + ρJi

∂μ̃

∂xi
+ σi j

∂ui

∂x j
(2a)

where we have defined the following variables:

d
dt
=
∂

∂t
+ ui

∂

∂xi
, σi j = νρ(ui, j + u j,i) − 2

3
νρδi juk,k, (2b)

where ui is the total velocity field, ν the kinematic viscosity, ρ the
density, and σi j the viscous stress tensor. Assuming incompress-
ibility requires that the last term in (2b) is zero. Furthermore, the
q-flux is defined as follows:

qi = Fr
i − ρhJi − ρJiκT

∂μ̃

∂c

∣∣∣∣∣
p,T
, h = μ̃ − T

∂μ̃

∂T

∣∣∣∣∣
p,c
· (2c)

here, Fr
i is the radiative flux which, in the absence of the diffu-

sion flux Ji, would be the only term in qi and μ̃ is the chemical
potential of the mixture. In a two-fluid model, the densities of
the two components are ρc, ρ(1 − c), respectively and the con-
centration equation reads as

dρc
dt
=
∂ρJi

∂xi
, (2d)

when the c-field corresponds for example to Li7, the correspond-
ing diffusion flux Ji discussed by Chapman & Cowling (1970),
is given by

Ji = χc(c,i + κT T−1T,i + κp p−1 p,i) (2e)

with the standard notation a,i = ∂a/∂xi, and where κT , κp are
dimensionless functions. Often, in the literature Ji includes the
density and has the opposite sign, and χc is called D. We have
also found that different authors employed different notations,
for example Eq. (2.1) of Aller & Chapman (1960), Eq. (3) of
Schatzman (1969), Eq. (1) of Michaud (1970), and Eq. (1) of
Vauclair & Vauclair (1982).

As one can observe from Eq. (2e), the diffusion flux is con-
tributed not only by the first term, which is the traditional gra-
dient of the concentration, but also by the temperature and pres-
sure gradients first introduced by Chapman (1917). Next, one
employs the thermodynamic relations:

T
dS
dt
= cp

dT
dt
− T

∂μ̃

∂T

∣∣∣∣∣
p,c

dc
dt
+ Tρ−2 ∂ρ

∂T

∣∣∣∣∣
p,c

dp
dt
· (3a)

Making use of Eq. (2d) and taking Tρ−1 ∂ρ
∂T

∣∣∣∣
p,c
= −1 correspond-

ing to no radiation pressure, Eq. (2a) becomes

ρcp
dT
dt
=

dp
dt
− ∂Fr

i

∂xi
+ σi j

∂ui

∂x j
+ χc

∂c
∂xi

∂h
∂xi

(3b)

where we have neglected a term that involves the product of two
molecular diffusivities and where

h =
5
2

kT
μ1,2

, μ1,2 =
(
μ−1

1 − μ−1
2

)−1
(3c)

where the μ are the mean molecular weights of the two sub-
stances. We note that if one employs an equation of state for a
perfect gas, the dp/dt term inf (3b) can be absorbed into the left
hand side which retains the same form but with cv in lieu of cp.

The next step is to employ (1b), separate all the fields into
a mean and a fluctuating part, carry out the averages, and ob-
tain the dynamic equation for the mean variables. The necessary
steps were discussed in a previous work (Canuto 1999), so we
limit ourselves to cite the final result that reads as

ρ
D
Dt

(cpT + K + Ku +G) =
∂p
∂t
− ∂

∂xi
(Fr

i + Fconv
i

+ Fke
i + ρRi ju j) + ρχc

∂c
∂xi

∂h
∂xi

(4a)
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where

D
Dt
≡ ∂

∂t
+ uj

∂

∂x j
· (4b)

On the lefthand side of (4a), we have defined the following vari-
ables:

eddy kinetic energy: ρK =
1
2
ρu′iu

′
i

mean field kinetic energy: Ku =
1
2

ui ui (4c)

gravitational energy: giρui = ρ
DG
Dt
·

On the right side of (4a), we have the variables:

radiative flux: Fr
i = −Kr

∂T
∂xi

convective flux: Fconv
i = cpρT ′u′i

flux of eddy kinetic energy: Fke
i =

1
2
ρu′ju

′
ju
′
i (4d)

Reynolds stresses: ρRi j = ρu′ju
′
i ,

where Kr = cpρχ and χ, the thermometric conductivity, has the
units of cm2 s−1. The diffusion approximation in the first of (4d)
is not required by the present formalism and is being suggested
as an example. At first sight, Eq. (4a) may be somewhat surpris-
ing since one is accustomed to the much simpler equation

ρcv
DT
Dt
= − ∂

∂xi

(
Fr

i + Fc
i + Fke

i

)
, (4e)

which in the stationary case further reduces to the “flux conser-
vation law”:

Fr
i + Fc

i + Fke
i = const., (4f)

implying the constancy of the radiative + convective +
eddy kinetic energy fluxes, the latter being often neglected.
Equation (4a) is considerably more general than (4f) for the fol-
lowing reasons:

1) the lhs contains the total energy of the system, as indeed ex-
pected, namely,

E = cpT + K + Ku +G (4g)

which is the sum of enthalpy, turbulent kinetic energy, mean
flow kinetic energy and gravitational energy, respectively.
Which of the four terms in (4g) is the largest depends on
the specific physical problem at hand;

2) in the second term of the rhs of (4a), we have four terms

Fr
i + Fc

i + Fke
i + ρRi ju j (4h)

which represent the radiative, convective, and eddy kinetic
energy fluxes, while the last term is the flux of the Reynolds
stresses by the large scale velocity field u j. To get a feel-
ing for what the last term means, consider the z-component
of (4h) and the closures to be derived in what follows:

Fc
z =

cpρ

αT Hp
Kh(∇ − ∇ad), Rz ju j = −Km

∂Ku

∂z
. (4i)

Here, Kh,m are heat and momentum diffusivities, Ku the mean
flow kinetic energy (see the second of 4c) and we have used
the relations:

uw = −Km
∂u
∂z
, vw = −Km

∂v

∂z
· (4j)

Thus, the ratio of the second to last term in (4h) is given by

Fc
z

ρRz ju j
= − 1

σt

cp

αT Hp

∇ − ∇ad

∂zKu
(4k)

where the ratio Kh/Km is the inverse of the turbulent Prandtl
numberσt, which in the case of stable stratification ∇−∇ad <
0, is an increasing function of the Richardson number as dis-
cussed in detail in Paper II. To assign a numerical value to the
mean kinetic energy, one needs the meridional currents pos-
sibly derived from helio-seismological studies, as discussed
in Paper V;

3) an interesting but never accounted for term, is the last one
in (4a) which represents the effect of the gradient of the mean
c-field on the temperature field.

2.2. Mean c-field

The starting relation is Eqs. (2d, e). Carrying out the mass aver-
aging process (Favre 1969; Canuto 1997) defined as

ρc = ρC, ρcui = ρCui + ρu′ic′, (5a)

we obtain

ρ
DC
Dt
= − ∂

∂xi
(ρJc

i ) +
∂

∂xi

⎛⎜⎜⎜⎜⎝ρχc
∂C
∂xi

⎞⎟⎟⎟⎟⎠ · (5b)

The second term in the rhs of (5b) is the ordinary molecular dif-
fusion, while the first term is turbulent c-flux akin to the convec-
tive flux, second term in (4d):

c−flux: ρJc
i = ρu′ic′. (5c)

At first sight, it may look as though Eqs. (5b, c) are unrelated
to the T -field but that is not the case since, as we show below
in Eqs. (12d, e), the turbulent c-flux (5c) entails the turbulent
convective flux. Clearly, the term in (5b) with the molecular dif-
fusivity χc only represents passive scalars.

2.3. Mean velocity

We begin with the Navier-Stokes equations for a compressible
fluid:

∂ρui

∂t
+

∂

∂x j
ρuiu j = − ∂p

∂xi
− ρgi +

∂σi j

∂x j
≡ Fi, (6a)

where the viscous stress tensor was defined in Eq. (2b). Mass
averaging Eq. (6a) via relations analogous to (5a)

ρui = ρ ui, ρu′i = 0, ρuiu j = ρuiu j + ρu′iu
′
j (6b)

one obtains from (6a):

∂ρui

∂t
+

∂

∂x j
ρ(uiu j + Ri j) = − ∂p

∂xi
− ρgi (6c)

where the Reynolds stresses were defined in Eq. (4d). It is im-
portant to notice that Eq. (6c) can be rewritten in the more trans-
parent form:

ρ
Dui

Dt
= − ∂

∂xi
(pδi j + ρRi j) − ρgi. (6d)

To solve Eq. (6d) one needs the Reynolds stresses, which we
study in Sect. 3.
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In conclusion, the equations for the mean T ,C, u are given
by Eqs. (4a), (5b), and (6d). These equations contain the follow-
ing second-order turbulent correlations:

ρT ′u′i , ρc′u′i ρu′iu
′
j, (6e)

representing temperature, c-field, and momentum fluxes whose
equations we derive next.

3. Reynolds stresses
The derivation of the dynamic equation for the Reynolds stress
was presented in an earlier work (Canuto 1997, Eqs. (14)), so
we only cite the final result which we simplify by neglecting the
terms due to compressibility. We have

DRi j

Dt
+ Di j = − (Riku j,k + R jkui,k)︸���������������︷︷���������������︸

shear

+ ρ −2
(
ρ′u′jδik + ρ′u′iδ jk

) ∂p
∂xk︸�����������������������������︷︷�����������������������������︸

buoyancy

× − ρ −1πi j︸����︷︷����︸
pressure correaltion

− 2
3
εδi j︸︷︷︸

dissipation

(7a)

where πi j = Πi j− 1
3δi jΠkk is the traceless pressure correlation ten-

sor, and Di j represents the diffusion of the Reynolds and pressure
fluxes, both of which are third-order moments. The trace of (7a)
yields the equation for the turbulent kinetic energy,

K =
1
2

Rii (7b)

which reads as

DK
Dt
+ D(K) = −Ri jui, j + gλi

(
αT Jh

i − αμJμi
)
− ε (7c)

where

λi ≡ − (gρ)−1 ∂p
∂xi
· (7d)

Since the density field depends on both T and μ-fields, we also
have

ρ′/ρ = −αT T ′ + αμμ′ (7e)

where αT,μ = − (∂ lnρ/∂T )p,μ, (∂ lnρ/∂μ)p,T are the expansion
coefficients. Thus, the combination of heat and μ-fluxes:

Jρi = −ρ −1ρ′u′i
= g−1b′u′i = αT u′iT ′ − αμu′iμ′

= αT Jh
i − αμJμi , (7f)

is called the density-buoyancy flux where b′ = −gρ −1ρ′ is
the buoyancy field. Thus, the physical interpretation of the rhs
of (7c) is as follows. The first term is the source of K due to
mean shear; the second term given by (7f) may act as a source
or as a sink depending on whether one deals with unstable or
stable stratification, as well as the sign of the μ gradient (in the
case of salt fingers; the contribution is a source while in the dif-
fusive convective case, semi-convection, the term acts as a sink);
finally, the last term, which is always negative, represents the
sink of K due to molecular viscosity, and its equation will be
discussed in Sect. 6.

Next, we consider the Reynolds stresses which enter the first
source term in the rhs of (7c), and we introduce the traceless
form

bi j = Ri j − 1
3
δi jRkk, (8a)

whose dynamic equation can be derived from Eqs. (7a, c) to be

Dbi j

Dt
+ Di j(b) = −4K

3
S i j − Σi j − Zi j + Bi j − πi j, (8b)

where we have defined the following tensors with zero trace:

Shear : S i j =
1
2

(ui, j + uj,i),Vorticity : Vi j =
1
2

(
ui, j − uj,i

)
(8c)

Zi j = bikV jk + b jkVik, Σi j = bikS jk + b jk S ik − 2
3
δi jbkmS km (8d)

Bi j = g

(
λiJ

ρ
j + λ j J

ρ
i −

2
3
δi jλk Jρk

)
. (8e)

The final step is the closure of the pressure correlation tensor,
a topic that has been widely discussed elsewhere (Canuto 1994,
1997) and need not be repeated here. The final expression of
Eq. (8b) is then

Dbi j

Dt
+ Di j(b) = − 5

τ
bi j − 8K

15
S i j − (1 − α1)Σi j

− (1 − α2)Zi j + β5Bi j. (8f)

Since α1,2 = 0.984, 0.568, β5 = 1/2, τpv = 2τ/5, we neglect the
Σi j term and round off α2 = 1/2, in which case (8f) simplifies to

Dbi j

Dt
+ Di j(b) = −5

τ
bi j − 8K

15
S i j − 1

2
Zi j +

1
2

Bi j, (8g)

which, in the stationary and local limit, becomes

bi j = − 8
75

KτS i j − 1
10
τZi j +

1
10
τBi j. (8h)

Equation (8h) is quite simple: in fact, it is a set of linear algebraic
relations whose solution yields the Reynolds stresses bi j. We re-
call that Zi j depends on bi j itself, and Bi j are given in Sect. 4. We
also recall that the dynamical time scale is given by

τ =
2K
ε

(8i)

whose determination we discuss in Sect. 6.

4. Heat and μ-fluxes

We begin by defining the heat and μ-fluxes:

ρJh
i = ρu′iT ′ ρJμi = ρu′iμ′. (9a, b)

To derive the dynamic equation for (9a), one begins with Eq. (3b)
multiplied by ui and adds to it Eq. (6a) multiplied by T .
Neglecting the molecular terms, we have

∂ρTui

∂t
+

∂

∂xi
ρTuiu j = Aui + FiT, (9c)

where the variable A is defined as

cpA ≡ dp
dt
− ∂Fr

i

∂xi
+ σi j

∂ui

∂x j
, Fi ≡ − ∂p

∂xi
− giρ +

∂σi j

∂x j
· (9d)
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Next, we average Eqs. (9c, d). The process was carried out in
detail elsewhere (Canuto 1997) with the result

DJh
i

Dt
+ D f

(
Jh

i

)
= β jRi j − Jh

j (S i j + Vi j)

+ gλi

(
αT T ′2 − αμμ′T ′

)
− τ−1

pθ Jh
i , (9e)

where

βi = − ∂T
∂xi
− λi

g

cp
· (9f)

It is useful to consider the physical origin of the third term on
the rhs of (9e). Consider the fluctuating component of the term
– ρg on the rhs of the momentum Eq. (6a). Since to obtain the
dynamical equation for the heat flux (9a), one multiplies the T ′
equation by u′i and the u′i equation by T ′, the last operation gives
rise to the term

− gρ −1ρ′T ′ = g
(
αT T ′2 − αμT ′μ′

)
(9g)

where we use (7e). Relation (9g) is indeed the third term in the
rhs of (9e). The first term in the rhs of (9g) represents the poten-
tial energy (temperature variance), but due to the μ-field, there
is a second term representing the correlation between the T and
μ fields. In the local and stationary case, Eq. (9e) simplifies con-
siderably as it becomes an algebraic equation for the heat flux:(
τ−1

pθ δi j + S i j + Vi j

)
Jh

j = β jRi j + gλi

(
αT T ′2 − αμT ′μ′

)
. (9h)

The last two terms can be derived to have the following form:

T ′2 = τθJh
i βi, T ′μ′ = τμθ

(
Jμi βi − Jh

i μ,i
)
. (9i)

Once substituted in (9h), the latter can be rewritten in the simpler
form:

Heat Fluxes:
(
δi j + ηi j

)
Jh

j = γi jβ j, (10a)

where we have defined the following tensors:

γi j = π4τ(Ri j − π2gα
τ
μλiJ

μ
j )

ηi j = π4τ[S i j + Vi j − gτλi(π5αTβ j + π2αμμ, j)]. (10b)

In order to homogenize the notation, we have measured the dif-
ferent time scales in units of (8i) and introduced the following
dimensionless variables,

π1,2,3,4,5 ≡ τpμ/τ, τμθ/τ, τμ/τ, τpθ/τ, τθ/τ, (10c)

whose determination is an important task that will be dealt
with subsequently. Relations (10c) represent decay times due
to smallscale dissipation as well as pressure-correlations time
scales (hence the labels “pθ” and “pμ”), which in the turbu-
lence closure literature are known as the Rotta’s (1951) terms.
Some comments are needed to interpret the physical content of
Eqs. (10a,b). The heat flux depends on the following variables:

Adiabatic. temp. gradient, shear/vorticity, μ − fluxes. (10d)

The Reynolds stresses Ri j are obtained solving Eqs. (8h), which
in turn depend on the density flux, that is, heat fluxes (10a, b)
and concentration fluxes that we study next.

It is of interest to note that the heat flux in (10a) can be rewrit-
ten in the more familiar form given by a heat diffusivity times
the adiabatic temperature gradient. Indeed, using the Hamilton-
Cayley theorem, one can rewrite (10a) as

Jh
i = (Kh)i jβ j (10e)

where (Kh)i j is a turbulent heat diffusivity tensor whose explicit
form can be computed, but it is doubtful whether in practical
computations such a form could be more useful than (10a).

μ−fluxes, ρJμi =ρu′iμ′.

We begin with relations (2d, e). Multiplying (2d) by ui, Eq. (6a)
by μ and adding the two, we obtain

∂ρμui

∂t
+

∂

∂xi
ρμuiu j = Fiμ. (11a)

Next, using (5a), we mass average (11a) and obtain an equation
analogous to (9e):

DJμi
Dt
+ D f (Jμi ) = −μ, j Ri j − Jμj

(
S i j + Vi j

)
+ gλi(αT T ′μ′ − αμμ′2) − τ−1

pμJμi . (11b)

Using the second of (9i) and the analog of the first of (9i)

μ′2 = −τμJμj μ, j, (12c)

we obtain, after some algebra, the following equation for the
μ-flux:

(δi j + ξi j)Jμj = −di jμ, j (12d)

where

di j = π1τ
(
Ri j + gαTπ2τλi J

h
j

)
ξi j = π1τ

[
S i j + Vi j − gτλi

(
π2αTβ j + π3αμμ, j

)]
. (12e)

As discussed before, Eqs. (10a, b) and (12d, e) show that the heat
and μ-fluxes depend on each other and both depend on shear and
vorticity. In principle, Eqs. (12d, d) can also be written in a form
analogous to Eq. (10e).

5. The dissipation-relaxation time scales π′s
Each of the second-order correlations discussed in the previous
sections is characterized by a dissipation-correlation time scale
that we have normalized with the dynamical time scale (8i) giv-
ing rise to (10c), which must now be determined in terms of the
large scale features of the model. Since we are considering a
physical situation with both mean velocity fields (giving rise to
shear mixing), temperature and μ- fields (giving rise to double-
diffusion processes), we need two large-scale, dimensionless
variables, one to characterize the temperature-velocity fields and
the second to characterize the temperature-μ fields, or, more cor-
rectly, the relative gradients of these fields. Traditionally, these
two variables have been chosen to be the Richardson number Ri
and the density ratio Rμ (a term borrowed from oceanography).
Ri is defined as

Ri =
N2

Σ2
(13a)

where Σ2 is the mean shear squared defined in terms of the mean
velocities fields,

Σ = (2S i jS i j)1/2, S i j =
1
2

(ui, j + uj,i), ui, j = ∂ui/∂x j (13b)

while the Brunt-V äisäla frequency N is given by

N2 = −g
ρ

∂ρ

∂z
= gαT

⎡⎢⎢⎢⎢⎣∂T
∂z
−

⎛⎜⎜⎜⎜⎝∂T
∂z

⎞⎟⎟⎟⎟⎠
ad

⎤⎥⎥⎥⎥⎦ − gαμ ∂μ
∂z
, (13c)
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where αT,c = −(∂ lnρ/∂T )p,c, (∂ lnρ/∂C)p,T are the expansion
coefficients. Using the relations

αT

⎡⎢⎢⎢⎢⎣−∂T
∂z
+

⎛⎜⎜⎜⎜⎝∂T
∂z

⎞⎟⎟⎟⎟⎠
ad

⎤⎥⎥⎥⎥⎦ = H−1
p (∇ − ∇ad) (13d)

αμ
∂μ

∂z
= −H−1

p ∇μ, ∇μ ≡ ∂ ln μ
∂ ln P

· (13e)

the density ratio is defined as

Rμ ≡
gαμμ,z

gαT (T ,z − T ,zad)
=

∇μ
∇ − ∇ad

· (13f)

Equation (13c) then becomes

N2 = −gH−1
p (∇ − ∇ad)(1 − Rμ). (13g)

The task is now that of constructing the functions

πk(Ri,Rμ). (13h)

The determination of such functions was the main goal of
Canuto et al. (2008b, 2009) intended to reproduce labora-
tory data (without shear but with double-diffusion, DD) and
oceanic data (which depend on both shear and DD instabilities).
However, in a stellar context, one must include a Peclet number
dependence because radiative losses by the eddies weaken the
strength of turbulence. Adopting the treatment developed else-
where (Canuto & Dubovikov 1998; Canuto et al. 2008a,b), we
now have:

π1 = π0
1

(
1 +

Ri Rμ

a + Rμ

)−1

, π4 = π
0
4 f (Pe)

(
1 +

Ri
1 + aRμ

)−1

π2 = π0
2(1 + Ri)−1[1 + 2Ri Rμ(1 + R2

μ)−1], π5 = π
0
5g(Pe),

π0
1 = π0

4 = (27 Ko3/5)−1/2(1 + σ−1
t )−1, π0

2 = 1/3, π3, (13i)

= π0
3 = π

0
5 = σt,

f (Pe) = bPe(1 + bPe)−1, g(Pe) = cPe(1 + cPe)−1,

a = 10,Ko = 5/3, 4π2b = 5
(
1 + σ−1

t

)
, 7π2c = 4σ−1

t

where the Peclet number Pe has the following form:

Pe =
4π2

125
K2

εχ
= 1.3w �χ−1 (13j)

where χ (cm2 s−1) was defined after Eq. (4d). Here, � is a length
scale that approaches κz near the boundaries (κ = 0.4 is the
von Karman constant) and becomes a constant fraction of the
size of the region in the middle of it. This means that � is not a
constant and that decreases near the boundaries of a convective
region. This behavior, together with that of w, makes Pe very
small near the convective-radiative interface, a conclusion that
is model independent. We suggest, however, using the first rela-
tion in (13j) with the equations for K-ε given below.

6. The K-ε model

The above relations contain two turbulence variables that must
be determined, the turbulent kinetic energy K and its rate of
dissipation ε. With the inclusion of compressibility effects, the
equation for K reads (Canuto 1997, Eqs. (15b) and (35c)):

DK
Dt
+ D(K) = − bi jS i j︸��︷︷��︸

Ps

+ gλiJ
ρ
i︸︷︷︸

Pb

−ε. (14a)

The diffusion term D(K) is defined as the divergence of the flux
of kinetic energy,

D(K) =
∂Fke

i

∂xi
, Fke

i =
1
2

q2u′i , q2 = u′iu
′
i , (14b)

and its determination requires a closure for the third-order
moment Fke

i . As we discuss in Paper V, such a nonlocal term
becomes indispensable in the context of the OV (overshooting)
determination at the bottom of the convective zone. We further
propose that, rather than using a specific closure, one can turn the
problem around and construct a differential equation for Fke

i thus
avoiding closure problems. The equation for ε, the rate of dissi-
pation of turbulent kinetic energy K, is given by (c1,2 = 2.88,
3.84):

2K
ε

Dε
Dt
=

1
2

∂Fke
i

∂xi
+ c1Ps + c3Pb − c2ε (14c)

where we use the form of the flux of ε suggested by Kupka &
Mutsham (2007):

Fε
i = −

1
2
τ−1Fke

i · (14d)

7. Features of the model: no Ri(cr)

Stably stratified flows are characterized by two competing fac-
tors: a shear instability that acts as a source of mixing and a
stable temperature gradient that acts as a sink. The two com-
bine into a single parameter, the Richardson number Ri defined
in Eq. (13a). The key physical question is whether there is a
critical value of Ri beyond which stable stratification overpow-
ers the mixing action of shear so as to lead to zero mixing.
The standard RSM models used thus far exhibit a finite critical
Richardson number Ri(cr). For example, the Mellor & Yamada
model (1982) yields Ri(cr) = 0.19, while the recent model by
Cheng et al. (2002) increases the value to Ri(cr) = O(1), thus
overcoming the difficulty first raised by Martin (1985) that the
MY model yielded too shallow ocean mixed layers. A stability
analysis including nonlinearities (Abarbanel et al. 1984) also ar-
rived at Ri(cr) = O(1).

However, even an Ri(cr) ≈ 1 is not satisfactory. In fact,
several recent data have shown that mixing persists even after
Ri = 1. These data include meteorological observations (Kondo
et al. 1978; Bertin et al. 1997; Mahrt & Vickers 2005; Uttal
et al. 2002; Poulos et al. 2002; Banta et al. 2002), lab exper-
iments (Strang & Fernando 2001; Rehmann & Koseff 2004;
Ohya 2001), LES (Zilitinkevich et al. 2007; Zilitinkevich & Esau
2007), DNS (Stretch et al. 2001), oceanic measurements (Mack
& Schoeberlein 2004), and theoretical modeling (Sukoriansky
et al. 2005).

Zilitinkevich et al. (2007) constructed a model called “en-
ergy and flux-budget turbulence closure” that has no Ri(cr). They
then show how the model can explain a wide variety of data.
Their model differs significantly from the “main stream” closure
models used in traditional second-order closure models. In par-
ticular, their parameterization of the pressure-correlations dif-
fers from the “standard” ones developed by numerous authors
and supported by theoretical and experimental data (Rotta 1951;
Launder et al. 1975; Lumley 1978; Zeman & Lumley 1979;
André et al. 1978; Mellor & Yamada 1982; Cheng et al. 2002).

Given this situation, Canuto et al. (2008a,b) tried to answer
the following question: can the traditional RSM models encom-
pass an arbitrarily large Ri(cr) and what changes are needed to
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do so without spoiling their documented performance for small
and medium Richardson numbers? The answer turned out to be
relatively simple since a minimum alteration was required to
the previous mixing models to encompass a no-Ri(cr) feature.
Specifically, the introduction of the 1 + Ri term in π4 given in
Eq. (13i) was all that was needed (such correction does not exist
in the unstably stratified case however). Several arguments justi-
fying such an extension were presented in Canuto et al. (2008a),
where the performance of the model vs. data is fully discussed.

8. Features of the model: arbitrary Peclet number

In the numerical simulations of Brummel et al. (2002) and Brun
& Toomre (2002), Pe is defined as in (13j), but the length scale �
is taken to be constant (the depth of the domain), which as we
have discussed, is not true near the boundaries. This makes it
difficult to compare the results of the numerical simulations in
which Pe is taken tobe larger then unity, the smallest value being
about 10. As an example, it is difficult to physically interpret
Fig. 14 in Brummel et al. (2002) showing that the OV extent
decreases as Pe increases. With a constant length scale, the Pe
used in such calculations depends only on the rms velocity, and
a large Pe corresponds to a large rsm that should entail large
rather small OV’s. In the present treatment, Pe is a dynamical
variable computed along with all the other variables and not a
quantity whose value is assumed.

9. Summary

In many ways, the most surprising aspect of the RSM results is
the relative simplicity of the equations determining the Reynolds
stresses, heat, and concentration fluxes, since they are linear al-
gebraic equations. This is especially relevant if one considers
the amount of information they contain: stable stratification, un-
stable stratification, rigid rotation, shear, and radiative losses
(Peclet number). The two differential equations for K and ε char-
acterize any turbulence model, not this one in particular. We de-
rived the equations that describe mixing in the presence of

temperature, μ, velocity (15a)

Summarizing our results, we have derived the following equa-
tions:

mean temperature, Eq. (4a)

mean μ,Eq. (5b)

mean velocity field, Eq. (6d)

Reynolds stresses, Eq. (8h) (15b)

heat fluxes,Eqs. (10a, b)

μ − fluxes, Eqs. (12d, e)

time scales: Eqs. (13i)

Peclet number,Eq. (13j)

K − ε,Eqs. (14a−d).

The model is valid for arbitrary temperature, concentration, and
mean velocity gradients, as well as arbitrary Ri and Peclet num-
bers.

Appendix A: Summary of the model equations

Reynolds stresses:

bi j = Ri j − 1
3
δi jRkk, ρRi j = ρu′iu

′
j (A.1)

bi j = − 8
75

KτS i j − 1
10
τZi j +

1
10
τBi j (A.2)

S i j =
1
2

(ui, j + uj,i), Vi j =
1
2

(ui, j − u j,i),

Zi j = bikV jk + b jkVik, Bi j ≡ Bh
i j − Bμ

i j (A.3)

Bh
i j = gαT (λiJ

h
j + λ jJ

h
i −

2
3
δi jλk Jh

k ),

Bμ
i j = gαμ

(
λi J

μ
j + λ jJ

μ
i −

2
3
δi jλkJμk

)
(A.4)

λi ≡ −(gρ)−1 ∂p
∂xi

, τ =
2K
ε
· (A.5)

Heat fluxes, ρJh
i = ρu′iT ′:

(δi j + ηi j)Jh
j = γi jβ j, βi = − ∂T

∂xi
− λi

g

cp
(A.6)

γi j = π4τ(Ri j − π2gαμτλi J
μ
j )

ηi j = π4τ
[
S i j + Vi j − gτλi(π5αTβ j + π2αμμ, j)

]
. (A.7)

μ−fluxes, ρJμi = ρu′iμ′:(
δi j + ξi j

)
Jμj = −di jμ, j (A.8)

where:

di j = π1τ(Ri j + gαTπ2τλiJ
h
j )

ξi j = π1τ[S i j + Vi j − gτλi(π2αTβ j + π3αμμ, j)]. (A.9)

Appendix B: Mixing length theory

In the absence of mean velocities and concentration fields, we
write the heat flux in the standard form:

w′T ′ = βχΦ, Φ =
Kh

χ
(B.1)

where the dimensionless Φ represents the ratio of the turbulent
diffusivity to the thermometric one. From Eq. (10a) in the 1D
case with j = 3, we derive the relation:

w′T ′ = Khβ, Kh = τw2π4

(
1 + π4π5N2

hτ
2
)−1

, N2
h = −gαTβ. (B.2)

Using the relations:

w2

K
∼ const., ε = gαTw′T

′
, ε =

K3/2

Λ
(B.3)

we obtain after some simple algebra (and taking all the coeffi-
cients to be of order unity):

w′T ′ = χβS 1/2, Φ ∼ S 1/2, S =
gαTβΛ

4

χ2
(B.4)

which is the well known expression for the heat flux provided by
the MLT for the case of efficient convection. In the same limit,
we have that the Peclet number is given by:

Pe ∼ (SΦ)1/3 ∼ S 1/2 (B.5)
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Appendix C: The Ri →∞ case, analytic solution

Though this version of the model is restrictive, it is of interest
to have a complete analytical solution of the problem which we
present in what follows. From relations (10a, b) and (12d, e),
we obtain that the heat and μ-fluxes are given by the following
expressions:

Jh =
ρw′T ′

ρ
= Khβ, Kh = τw2Ah

(C.1)

Jμ =
ρw′μ′

ρ
= −Kμ

∂μ

∂z
, Kμ = τw2Aμ

where the dimensionless functions Ah,μ are given by the alge-
braic relations:

DAh = π4(1 + ηx + π1π2xRμ),

DAμ = π1(1 + μx − π2π4x),

D = (1 + ηx)(1 + μx) + π1π
2
2π4x2 Rμ,

η = π1(π2 − π3 Rμ),

μ = π4(π5 − π2 Rμ). (C.2)

The variables π′s are given by relations (13i) and x is defined as
follows:

x = τ2N2
h , N2

h = −gαTβ = −gH−1
p (∇ − ∇ad). (C.3)

The next step is to solve the Reynolds stress Eqs. (8h). The result
is the algebraic relation:

w2

2K
=

[
30
7
+ x(Ah − AμRμ)

]−1

· (C.4)

The two key variables K-ε still remain to be determined and in
principle one has to solve the two differential Eqs. (14a, c). The
time scale τ then follows from the definition relation (8i) and all
the variables are then known as a function of Ri and Rμ.

If a local model can be used, a simplification occurs since
Eq. (14a) becomes, after using (7f) and the above results, the
following simple expression:

ε = τw2(AμRμ − Ah)N2
h . (C.5)

Combining (1e) with (C.5), one obtains an algebraic relation
only in terms of the variable x which reads:

x(AμRμ − Ah) =
15
7

(C.6)

which, after using relations (1b), can be solved to provide the
function:

x = x(Ri,Rμ). (C.7)

The explicit form of relation (C.6) upon use of relations (1b),
reads as follows:

x2A(x) + xB(x) − 15
7
= 0 (C.8)

where:

A(x) = π1(μ − π2π4)Rμ − π4(η + π1π2Rμ)

− 15
7

(μη + π1π
2
2π4Rμ)

B(x) = π1Rμ − π4 − 15
7

(η + μ). (C.9)

With the knowledge of x or equivalently τ = 2K/ε, we know the
ratio of the variables K-ε but not them singularly. To go further,
we adopt a relation of the Kolmogorv type:

ε =
K3/2

Λ
(C.10)

where Λ is a mixing length on which we shall comment below.
If so, we obtain that the kinetic energy K can now be expressed
in terms of the variable x, see relation (C.3), as follows:

K = 4Λ2

⎛⎜⎜⎜⎜⎝N2
h

x

⎞⎟⎟⎟⎟⎠ · (C.11)

If we substitute relation (C.6) into (C.4), we obtain the simple
relation:

τw2 =
28
15

K2

ε
(C.12)

and thus the expressions for the heat and μ diffusivities defined
in (C.1) take the forms:

Kh =
56
15
Λ2Ah

⎛⎜⎜⎜⎜⎝N2
h

x

⎞⎟⎟⎟⎟⎠1/2

Kμ =
56
15
Λ2Aμ

⎛⎜⎜⎜⎜⎝N2
h

x

⎞⎟⎟⎟⎟⎠1/2

· (C.13)

Relations (C.13) represent the analytical solution of the turbulent
part of the problem. See C99, Figs. 1–16.

The last part of the problem that remains to be solved is
the determination of the temperature gradient in the presence of
turbulent fluxes which is obtained by solving the flux equation
which in simplest form is given by:

Fr + Fh = const. (C.14a)

where we employ the relations:

Fr = H−1
p KrT∇, Kr = cpρχ, Fh = cpρβKh. (C.14b)

Semi-convection

As discussed in detail in Paper II, in this case we have ∇−∇ad >
0,∇μ > 0,Rμ > 0, N2

h < 0. Because of the last relation, the
solution of Eq. (C.8) must be taken to be negative x < 0 so that
relations (C.13) yield a positive diffusivity. Next, if we introduce
the dimensionless variable:

U =

( ∇ − ∇ad

∇r − ∇ad

)1/2

(C.14c)

the flux conservation law (C.14a) acquires the form:

U2

(
1 +

Kh

χ

)
= 1 (C.14d)

where the ratio Kh
χ measures the importance of turbulent diffu-

sivity over the radiative one (we recall that χ has dimensions of
cm2 s−1). Using the first of (C.13), we further have that the ratio
Kh/χ can be rewritten as:

Kh

χ
=

175
3π2

Ah(x)(−x)−1/2ΓU,

Γ =
8π2

125

[
gΛ4

χ2Hp
(∇r − ∇ad)

]1/2

(C.14e)
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where Γ can be interpreted as an efficiency factor similar to the
one in the mixing length scheme (see Appendix B), which can
be computed off line. Substituting (C.14e) into (C.14d) yields
the following equation for the variable of interest U:

ψU3 + U2 = 1, ψ ≡ 175
3π2

Ah(x)(−x)−1/2Γ. (C.14f)

Finally, we note that the Peclet number is defined in Eq. (13j)
and enters in the definitions of the π′s given by Eqs. (13i). It is
also a function of the variable U since (13j) becomes:

Pe = Γ(−x)1/2U. (C.14g)

Salt Fingers

In this case we have (see Paper II) ∇ − ∇ad < 0, ∇μ <
0, Rμ > 0,N2

h > 0. Thus, x > 0 and relations (C.11), (C.14c)
and (C.14g) become:

K = 4gΛ2H−1
p x−1(∇ad − ∇),

U =

( ∇ad − ∇
∇ad − ∇r

)1/2

, Pe = ΓUx−1/2. (C.14h)

We further have that:

Γ =
8π2

125

[
gΛ4

χ2Hp
(∇ad − ∇r)

]1/2

. (C.14i)

The first of Eq. (C.14f) does not change but the variable ψ is now
defined as follows:

ψ ≡ 175
3π2

Ah(x)x−1/2Γ. (C.14j)

The above relations constitute the analytical solution of the sec-
ond part of the problem (see C99, Figs. 1–16).
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